MSR Benefits

Molten Salt Reactor Advantages

  • Molten Fuel - Fuel circulates through the reactor, fission products get removed, for over 99% fuel use (vs. LWR ~3%). No long-term radioactive waste.
  • Salt Cooled - Coolant far below boiling point, reactor operates at atmospheric pressure. Fuel dissolved in stable salt (no water), no loss of coolant accident possible. No need for high-pressure safety systems.
  • High Inherent Safety - No water, no high pressure, nothing that could propel radioactive materials into the environment. Thermal expansion/contraction of molten fuel salt strongly regulates fission rate; MSR is a very stable reactor. Simple safety systems work even if no electricity or operators.
  • Easy Construction and Siting - Low pressure operation, so no high-pressure safety systems. No water, so no steam containment building. Reactor factory assembled, with modern quality control, sensors and communication.
  • Lower Cost - Even with exotic materials, construction costs will be dramatically lower than LWR — factory construction, minimal manual on-site preparation. No long-term radioactive waste, so no long-term storage.
  • High Temperature Operation - Heat to generate electricity, desalinate water, produce CO2-neutral vehicle fuel, etc.
0 Items

Fission of 1000 kg U-233 produces several chemicals essential for industry, readily extracted from a LFTR or any other Molten Salt Reactor, including 150kg xenon, 125kg neodymium (high-strength magnets), 20kg medical molybdenum-99, 20kg radiostrontium, zirconium, rhodium, ruthenium, and palladium.

MSRs also produce non-fissile Pu-238, that conventional reactors can’t produce isolated from highly fissile Plutonium-239; Pu-238 is needed for radioisotope power such as for NASA deep space exploration vehicles (none left, only Th to U-233 makes Pu-238 w/o Pu-239).

(Extracting these from fuel rods in a solid fuel reactor would be extremely difficult.)

Radioactive isotopes are needed for medical treatment, including highly-targeted cancer treatments. These are currently very rare, since they have half-lives of a few days. LFTRs would produce these as part of the decay of U-233, and they would be easy to remove from the fuel salt.

Iodine-131 is used to treat cancers of the thyroid.

Thorium-229 for cancer treatments, decays to Bismuth-213, which decays through alpha emission (unlike most of the fission products that decay through beta emission). By binding Bi-213 to an antibody, it can be directed swiftly to a cancerous cell. The alpha decay of the Bi-213 then has a high probability of killing the cancer cell. (Very small amount/treatment, but decays fast to Bi-209.)

There are other products of Molten Salt Reactors, that aren’t from fission, but from the heat produced. including making gasoline and diesel fuel, and desalinating water.

Molten Salt Reactors (or other modern reactor designs) are the only power source we have capable of generating enough power to both fuel the world and reduce the ocean acidification from CO2 entering the oceans. The specific acid created by CO2 in the oceans dissolves sea shells, including the cell walls of plankton, killing them. We have already put enough CO2 into the air to make the oceans acidic enough to make most species of plankton extinct. Making materials to remove the acid and/or remove the CO2 will take about the amount of energy the world currently uses, for over a decade.

Pin It on Pinterest

Share This